#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Gut microbiome in newborn


Authors: Bára Zapletalová 1;  Tomáš Matějek 1;  Radka Bolehovská 2
Authors‘ workplace: Dětská klinika, Fakultní nemocnice Hradec, Králové, Lékařská fakulta, Univerzita Karlova, v Hradci Králové 1;  Ústav klinické mikrobiologie, Fakultní nemocnice, Lékařská fakulta, Univerzita, Karlova v Hradci Králové 2
Published in: Čes-slov Pediat 2025; 80 (2): 87-96.
Category:
doi: https://doi.org/10.55095/CSPediatrie2024/064

Overview

Gut microbiome is regarded as an invisible organ influencing the human organism throughout the entire lifespan. Microbiome determines various physiological processes including immune system maturation, metabolic programming and furthermore, facilitates connections even between relatively distant organs (e.g. gut-brain axis). Its development begins shortly after birth and is modified by various aspects. We can categorize them into modifiable (antibiotic treatment, diet) and non-modifiable factors (gestational age, delivery mode). Intestinal alteration caused by these influencing factors might contribute to short-term and long-term morbidity. Our objective is to comprehend the microbiome development itself and its modifying factors. Understanding the microbiome complexity could help us make such medical decisions to outweigh negative sequelae of an early gut alteration. This review presents topics concerning microbiome origin and its development along with potential clinical aspects in term and preterm newborn. We also include recommendations for parents and health care professionals regarding possible attitudes, based on current scientific knowledge, to diminish early gut microbiome alterations.

Keywords:

Microbiome – breastfeeding – cesarean section – newborn – antibiotics – prematurity – gut microbiome


Sources

1.           Berg G, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 2020; 8(1): 103.

2.           Walters KE, Martiny JBH. Alpha-, beta-, and gamma-diversity of bacteria varies across habitats. PLoS One 2020; 15(9): e0233872.

3.           Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–6.

4.           Tamboli CP, et al. Dysbiosis in inflammatory bowel disease. Gut 2004. 53(1): 1-4.

5.           Salvucci E. Microbiome, holobiont and the net of life. Crit Rev Microbiol 2016; 42(3): 485–94.

6.           Kasarello K. Cudnoch-Jedrzejewska A, Czarzasta K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front Microbiol 2023; 14: 1118529.

7.           Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017; 20(2): 145–155.

8.           Česká mikrobiomová společnost. Stanovisko výboru ČMS, vymezení pojmů. Available from: https://www.mikrobiom-cms.cz/stanoviska-cms/analyza-mikrobiomu-uvod-do-problematiky/

9.           Stinson LF, et al. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front Microbiol 2019; 10: 1124.

10.        Aagaard K, et al. The placenta harbors a unique microbiome. Sci Transl Med 2014; 6(237): 237ra65.

11.        Collado MC, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep 2016; 6: 23129.

12.        Wilczyńska P, Skarżyńska E, Lisowska-Myjak B. Meconium microbiome as a new source of information about long-term health and disease: questions and answers. J Matern Fetal Neonatal Med 2019; 32(4): 681–686.

13.        Kennedy KM, et al. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613(7945): 639–649.

14.        Liu Y, et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am J Obstet Gynecol 2020; 223(2): 248.e1–248.e21.

15.        de Goffau MC, et al. Human placenta has no microbiome but can contain potential pathogens. Nature 2019; 572(7769): 329–334.

16.        Kuperman AA, et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. Bjog 2020; 127(2): 159–169.

17.        Sterpu I, et al. No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol 2021; 224(3): 296.e1–296.e23.

18.        Healy DB, et al. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 2022; 7(1): 22–33.

19.        Singh A, Mittal M. Neonatal microbiome - a brief review. J Matern Fetal Neonatal Med 2020; 33(22): 3841–3848.

20.        Gómez-Martín M, et al. Association between diet and fecal microbiota along the first year of life. Food Res Int 2022; 162(Pt A): 111994.

21.        Bäckhed F, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015; 17(5): 690–703.

22.        Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017; 8(2): 143–171.

23.        Laursen MF, et al. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere 2016; 1(1).

24.        Chambers ES, et al. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Curr Nutr Rep 2018; 7(4): 198–206.

25.        Hill CJ, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017; 5(1): 4.

26.        Maher SE, et al. The association between the maternal diet and the maternal and infant gut microbiome: a systematic review. Br J Nutr 2020: 1–29.

27.        Shaterian N, et al. Role of cesarean section in the development of neonatal gut microbiota: A systematic review. Open Med (Wars) 2021; 16(1): 624–639.

28.        Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 2020; 42(4): 413–429.

29.        Dierikx TH, et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: A systematic review. J Infect 2020; 81(2): 190–204.

30.        Rodriguez J, et al. The neonatal microbiome: implications for Neonatal Intensive Care Unit nurses. MCN Am J Matern Child Nurs 2017; 42(6): 332–337.

31.        Blekhman R, et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015; 16(1): 191.

32.        Koren O, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150(3): 470–80.

33.        Chu DM, et al. The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med 2016; 8(1): 77.

34.        Lundgren SN, et al. Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 2018; 6(1): 109.

35.        Fan HY, et al. Maternal vegetable and fruit consumption during pregnancy and its effects on infant gut microbiome. Nutrients 2021; 13(5).

36.        Laforest-Lapointe I, et al. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes 2021; 13(1): 1–15.

37.        Babakobi MD, et al. Effect of maternal diet and milk lipid composition on the infant gut and maternal milk microbiomes. Nutrients 2020; 12(9).

38.        Shao Y, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019; 574(7776): 117–121.

39.        Sakwinska O, et al. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose? Benef Microbes 2017; 8(5): 763–778.

40.        Ferretti P, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 2018; 24(1): 133–145.e5.

41.        Korpela K, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res 2018; 28(4): 561–568.

42.        Reyman M, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun 2019; 10(1): 4997.

43.        Yang W, et al. Ongoing supplementation of probiotics to Cesarean-born neonates during the first month of life may impact the gut microbial. Am J Perinatol 2021; 38(11): 1181–1191.

44.        Milani C, et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81(4).

45.        Carlson AL, et al. Infant gut microbiome associated with cognitive development. Biol Psychiatry 2018; 83(2): 148–159.

46.        Parra-Llorca A, et al. Preterm gut microbiome depending on feeding type: significance of donor human milk. Front Microbiol 2018; 9: 1376.

47.        Lyons KE, et al. Breast milk, a source of beneficial microbes and associated benefits for infant health. Nutrients 2020; 12(4).

48.        Granger CL, et al. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr 2021; 110(2): 450–457.

49.        Miura K, et al. Comparison of bacterial profiles in human milk from mothers of term and preterm infants. Int Breastfeed J 2023; 18(1): 29.

50.        Chu DM, et al. The development of the human microbiome: why moms matter. Gastroenterol Clin North Am 2019; 48(3): 357–375.

51.        Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014; 5(6): 779–84.

52.        Breastfeeding and the use of human milk. Pediatrics 2012; 129(3): e827–41.

53.        Olin A, et al. Stereotypic immune system development in newborn children. Cell 2018; 174(5): 1277–1292.e14.

54.        Embleton ND, et al. Effect of an exclusive human milk diet on the gut microbiome in preterm infants: a randomized clinical trial. JAMA Netw Open 2023; 6(3): e231165.

55.        Quigley M, et al. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev 2018; 6(6): Cd002971.

56.        Ledger WJ, et al. Are we using too many antibiotics during pregnancy? Bjog 2013; 120(12): 1450–2.

57.        Nogacka A, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome 2017; 5(1): 93.

58.        Corvaglia L, et al. Influence of intrapartum antibiotic prophylaxis for group b streptococcus on gut microbiota in the first month of life. J Pediatr Gastroenterol Nutr 2016; 62(2): 304–8.

59.        Aronoff DM, et al. Disturbing the neonatal microbiome is a small price to pay for preventing early-onset neonatal group B streptococcus disease: AGAINST: Against relying on antibiotics to prevent early-onset neonatal group B streptococcus disease. Bjog 2020; 127(2): 229.

60.        Zou ZH, et al. Prenatal and postnatal antibiotic exposure influences the gut microbiota of preterm infants in neonatal intensive care units. Ann Clin Microbiol Antimicrob 2018; 17(1): 9.

61.        Russell JT, et al. Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants. Sci Rep 2021; 11(1): 1943.

62.        Korpela K, et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018; 6(1): 182.

63.        Parm U, et al. Risk factors associated with gut and nasopharyngeal colonization by common Gram-negative species and yeasts in neonatal intensive care units patients. Early Hum Dev 2011; 87(6): 391–9.

64.        Brooks B, et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome 2014; 2(1): 1.

65.        Wiedermannová H, Zárubová P, Adámková V. Ceftazidim/avibactam v léčbě gramnegativní nozokomiální sepse u nezralého novorozence. Pediatr praxi 2020; 21(6): 426–428.

66.        Flandroy L, et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 2018; 627: 1018–1038.

67.        Azad MB, et al. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol 2013; 9(1): 15.

68.        Laursen MF, et al. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol 2015; 15: 154.

69.        Tun HM, et al. Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios. Microbiome 2017; 5(1): 40.

70.        Nermes M, et al. Furry pets modulate gut microbiota composition in infants at risk for allergic disease. J Allergy Clin Immunol 2015; 136(6): 1688–1690.e1.

71.        Wegienka G, et al. Subgroup differences in the associations between dog exposure during the first year of life and early life allergic outcomes. Clin Exp Allergy 2017; 47(1): 97–105.

72.        Brugman S, et al. Mucosal immune development in early life: setting the stage. Arch Immunol Ther Exp (Warsz) 2015; 63(4): 251–68.

73.        Thorburn AN, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat Commun 2015; 6: 7320.

74.        Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol 2020; 56: 30–37.

75.        Kollmann TR, et al. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 2012; 37(5): 771–83.

76.        Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity 2009; 31(3): 401–11.

77.        Atarashi K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500(7461): 232–6.

78.        Cahenzli J, et al. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 2013; 14(5): 559–70.

79.        World and H.O.O.a.o.A.a.h. www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

80.        Sanchez M, Panahi S, Tremblay A. Childhood obesity: a role for gut microbiota? Int J Environ Res Public Health 2014; 12(1): 162–75.

81.        Schwiertz A, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190–5.

82.        Ley RE, et al. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022–3.

83.        Cho KY. Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiol 2021; 21(1): 10.

84.        Sonnenburg JL, et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307(5717): 1955–9.

85.        Murugesan S, et al. Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis 2018; 37(4): 621–625.

86.        Jumpertz R, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94(1): 58–65.

87.        De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010; 107(33): 14691–6.

88.        Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab 2013; 17(6): 883–894.

89.        Dawson-Hahn EE, Rhee KE. The association between antibiotics in the first year of life and child growth trajectory. BMC Pediatr 2019; 19(1): 23.

90.        Mihi B, Good M. Impact of Toll-like receptor 4 signaling in necrotizing enterocolitis: the state of the science. Clin Perinatol 2019; 46(1): 145–157.

91.        Stewart CJ, et al. Temporal bacterial and metabolic development of the preterm gut reveals specific signatures in health and disease. Microbiome 2016; 4(1): 67.

92.        Boráková K. Aktuální diagnostická kritéria neonatální sepse a systémové zánětlivé odpovědi u plodu a novorozence Čes-slov Pediat 2021; 76 (1): 46–54.

93.        Stewart CJ, et al. Longitudinal development of the gut microbiome and metabolome in preterm neonates with late onset sepsis and healthy controls. Microbiome 2017; 5(1): 75.

94.        Kersbergen KJ, et al. Microstructural brain development between 30 and 40 weeks corrected age in a longitudinal cohort of extremely preterm infants. Neuroimage 2014; 103: 214–224.

95.        Nongena P, et al. Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Arch Dis Child Fetal Neonatal Ed 2010; 95(6): F388–90.

96.        Kuban KCK, et al. Among children born extremely preterm a higher level of circulating neurotrophins is associated with lower risk of cognitive impairment at school age. J Pediatr 2018; 201: 40–48.e4.

97.        Morland C, et al. Propionate enters GABAergic neurons, inhibits GABA transaminase, causes GABA accumulation and lethargy in a model of propionic acidemia. Biochem J 2018; 475(4): 749–758

Labels
Neonatology Paediatrics General practitioner for children and adolescents
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#